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Recommender systems are designed to assist users in discovering interesting items and bringing profits to online platforms.
The existing works primarily explore the correlation between historical feedback and model predictions through the data-
driven paradigm based on a single user-item rating matrix (i.e., overall rating). However, this single-criterion methods ignore
the users’ multi-criteria (MC) behavioral characteristics. For example, a hotel system allows users to rate from multiple
dimensions, such as environment and location (i.e., MC ratings). Moreover, selection bias is pervasive in user behavior data.
Traditional data-driven methods may induce spurious association and amplified biases. To address the above challenges, we
propose a debiasing framework called Multi-Criteria Causal Recommendation (MCCR), which encapsulates users’ diverse MC
preferences and employs causal inference to construct novel training and inference strategies. Specifically, we first represent
the causal relationships among variables in MC scenarios through the structural causal model. Then, we mitigate the negative
impact of selection bias through the back-door adjustment. Next, a graph representation learning framework suitable for MC
ratings is developed, which is used to extract higher-order information and infer the heterogeneity of users’ preferences with
different criteria. Experimental results on six real datasets demonstrate that the MCCR significantly outperforms the existing
baselines.

CCS Concepts: « Computing methodologies — Machine learning algorithms; « Information systems — Recom-
mender systems.

Additional Key Words and Phrases: Recommender Systems, Multi-Criteria Recommendation, Causal Inference, Debiasing

1 INTRODUCTION

Recommender systems (RSs) are critical technologies for alleviating information overload in the Internet era
[5, 31]. Its essence is to provide users with personalized items (e.g., products, movies, news, etc.) by analyzing
their historical behaviors and preferences. In the research of recommendation methods, collaborative filtering
(CF) has become a prominent:mainstream technique [67], which generates recommendation results by exploiting
the similarity between users-and items according to their interaction records [8]. In recent years, with the
development of deep learning [34], there has been a shift in recommendation methods from matrix factorization
to neural network-based modeling [57]. For example, cutting-edge approaches such as reinforcement learning
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Fig. 1. MC rating scenario and selection bias in Yahoo!Movie.

[3, 19], graph neural network [16, 68], and large language model [6, 71] have been introduced into RSs to facilitate
high-quality decision making.

Although the existing methods exhibit outstanding performance, most of them are modeled based on a single
user-item rating matrix (i.e., overall rating) for recommendation purposes [70]. Different from traditional single
criterion methods, multi-criteria systems enhance the predictive quality of the model by introducing additional
auxiliary information [1, 44]. For example, in the Yahoo!movie scenario (Fig: 1a), its rating system not only
contains the overall rating, but also is subdivided into four criteria, including visuals, direction, story, and acting.
Moreover, MC ratings reveal the heterogeneity of user preferences and can improve the accuracy of RSs [30, 41].
As an illustration, in Fig. 1b, although users u; and u3 have similar overall rating, they exhibit opposite preferences
in MC ratings. In contrast, u; and u, have more similar rating patterns. Therefore, RSs need to develop new
technology to extract higher-order user preferences from MC ratings.

So far, the MC rating methods are still not fully explored. On the one hand, the existing studies usually introduce
traditional similarity measures after splitting MC ratings and achieve prediction through an aggregation function
(e.g., weighted summation) [33, 51]. This-modeling scheme ignores the integrity of the criteria set and the
heterogeneity of user preferences. On the other hand, users often tend to rate items they like or dislike. This
spontaneous behavior may result in typical selection bias [11, 12], making the data collected not a representative
sample set. In the case of Fig. 1c, we pick four representative users on the training set and normalize the proportion
of ratings above the median for each user on different rating criteria. The results show significant differences in
the rating criteria that users focus on. For example, user u; prefers the visuals, while u3 pays more attention to
the story. Traditional methods treat the training errors in all observation labels as a loss function to uncover the
correlation between user feedback and model predictions [44]. This data-driven correlation learning paradigm
may continuously amplify the selection bias of RSs, which may damage the model’s recommendation quality
and user experience [11, 65]. For example, the system will be more inclined to recommend items with high
visuals ratings for user uy, which ignores personalized MC preferences. Therefore, it is important to develop
a recommendation framework that is applicable to MC ratings and captures the causality of user interactions
(72, 78].

To remedy the limitations of the above methods, we describe MC scenarios based on causal inference [45]
and leverage graph neural network (GNN) [22] to extract higher-order associations between users and items.
Causal inference focuses on extracting causal relationships among variables from the target task, which can help
RSs identify spurious association and mitigate the selection bias problem amplified [21, 27]. GNN is a neural
network technique that excels in modeling non-Euclidean graph structure data [52, 75], which can help RSs learn
complex MC behavioral characteristics of users [14, 69]. Therefore, we argue that integrating the strengths of
causal inference and GNN may be an effective path to approach MC task and alleviating bias. We will address the
following two critical challenges:

ACM Trans. Inf. Syst.



Causal Inference for Multi-Criteria Rating Recommender Systems + 3

¢ MC recommendation involves obvious bias problem. The collected user behavior data is usually
missing-not-at-random, which means that the observed samples are not a random subset of all possible
user-item interaction pairs. For example, users tend to rate the items they like. This implies that the
observed data cannot accurately reflect the underlying overall preference distribution of users. That is,
the training data inherently contains bias. The traditional MC methods primarily estimate the rating
probability conditioned on user and item representations. However, this training paradigm tends to inherit
and continuously expand the bias problem as the model is iteratively updated in the feedback loop [39].
Therefore, how to design a new inference strategy with causal inference is the primary challenge for
alleviating the bias problem.

e MC rating data contain heterogeneity in terms of user behavioral preferences. In the hetero-
geneous graph composed of MC scenes, each pair of nodes may contain different types of interactions
among them. RSs should consider the complexity of MC behaviors when selecting items and develop
comprehensive assessments according to the importance of different criteria preferences. In addition,
the supervised signals suffer from severe data sparsity, which may bring difficulties to the training and
limitation to the generalization ability of the model. Therefore, how to utilize GNN for multi-dimensional
perspective information fusion and mining complex user preferences is another important challenge.

To address the above challenges, we propose a novel debiasing framework called Multi-Criteria Causal
Recommendation (MCCR). Specifically, we adopt the structural causal model (SCM) to construct causal graph
suitable for MC scenarios, and identify the back-door path opened by the confounder that causes bias amplified
[45]. Subsequently, we implement interventions via the do calculus and utilize the back-door adjustment to design
new training and inference paradigms for debiasing purpose: This unbiased estimation strategy not only captures
the causal relationships between user behaviors and recommendation decisions, but also effectively alleviates the
selection bias problem. Next, we construct a bipartite interaction graph corresponding to each criterion. Each
graph defines the global embeddings of the nodes and the local embeddings in the single-criterion view, which
are used to enhance the integration and information learning capabilities of the model. Based on this, we measure
the degree of association among target rating and auxiliary criteria by using the graph attention mechanism [56],
and extract the heterogeneity of user preferences by capturing their sensitivity to different criteria. Moreover, we
design a self-supervised learning [40] loss in MC scenarios to enhance the embedding representation performance
for overall rating interactions. Finally, losses co-optimization improves the robustness of the model and alleviates
data sparsity in supervised signals. Our contributions are summarized below:

e We propose a causal graph for analyzing the causal relationships among the variables in MC recommen-
dation and illustrate the real reason why selection bias is amplified. To the best of our knowledge, this is
the first attempt to use causal inference to optimize MC methods.

e We develop an MCCR framework that efficiently encodes diversity information of each criterion to mine
MC behavioral characteristics of users. This approach enhances the extraction of local and global structure
in complex heterogeneous MC rating data.

e The experimental results on six public datasets show that the Top-N recommendation and debiasing
performance of the proposed MCCR outperforms the existing baselines.

2 RELATED WORK

In this section, we review three representative categories of methods in RSs: CF-based recommendation methods
[49], causal inference-based recommendation methods [72], and MC rating recommendation methods [2].

ACM Trans. Inf. Syst.
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2.1 CF-based Recommendation Methods

CF methods [17, 73] realize personalized recommendation by analyzing the similar preferences of the user’s
historical behaviors, which are divided into two categories: matrix factorization-based methods [26], and neural
network-based methods [25, 29]. In early research, CF mainly employs matrix factorization techniques, such as
singular value decomposition, to learn the implicit features of users and items. For example, He et al. [28] designed
a matrix factorization algorithm using alternating least squares to optimize implicit feedback data. With the
development of neural network technology, CF methods leverage the advantages to fuse multi-source information
(e.g., user and item attributes, clicks and comments, etc.) [18]. Currently, many deep learning methods have been
applied to RSs to provide more accurate recommendation results. For example, Ahmadian et al. [4] proposed a
reinforcement learning integration approach to formulate recommendation strategies based on prediction and
credibility.

It is worth mentioning that GNN, as a technique for modeling complex topological relationships in graph-
structured data, has been widely used in various recommendation scenarios [15, 58]. GNN can assist RSs in
mining higher-order associations between users and items more deeply, and improve the prediction performance
of the model. It designs corresponding graph network architectures (including homography, heterography,
hypergraphs, dynamic graphs, and large-scale graphs) according to specific scenario types. For example, Qin
et al. [46] proposed a graph ordinary differential equation framework to capture the underlying dynamics of
user behavioral characteristics. Li et al. [35] proposed a multi-modal recommendation framework by leveraging
knowledge distillation, which can capture the inherent bias among different modalities. However, the existing
GNN-based methods model recommendation task by using the single-criterion mechanism, which ignores the
MC behavioral characteristics of users in real life.

2.2 Causal Inference-based Recommendation Methods

Causal inference is remarkably effective in estimating causal effects among variables, and has been widely used
in social science, medical research, artificial intelligence and other fields [47]. For RSs, causal inference can
effectively alleviate the spurious association and bias problems (such as popularity bias [74], location bias [23],
exposure bias [48], etc.) caused by confounding variables [11]. At present, recommendation methods based on
causal inference are divided into two categories: the Rubin Causal Model (RCM)-based methods [47, 48], and the
Structural Causal Model (SCM)-based methods [10, 20, 53, 63, 72].

The RCM describes the possible outcomes when individuals receive different treatments by using causal effect
estimates. For example, Schnabel et al. [50] proposed an unbiased evaluator by using the inverse propensity
score to correct for selection bias in the observed data. Song et al. [54] proposed a conservative doubly robust
framework to mitigate the bias problem. The SCM employs causal graphs and structural equations to describe
the process of generating data from a causal perspective. For example, Wang et al. [59] alleviated the bias effects
of confounding by correcting unbalanced item distributions. Zhao et al. [74] proposed a time-aware debiasing
framework and inferred sensitivity to popularity bias by intervening. Chen et al. [9] proposed a novel debiasing
strategy to alleviate the bias problem caused by the traditional knowledge distillation paradigm. The SCM can
also be generalized to other types of RSs. For example, in recommendation scenarios containing knowledge
graphs, the SCM can alleviate the bias problem caused by structural information and similarity scores [66]. In
out-of-distribution scenarios, the SCM can mitigate the impact of outdated interactions by intervening in user
feature transfers [60].

The existing methods mainly model the bias problem with the single-criterion mechanism and pay less attention
to MC data. Given the advantage that the SCM can describe the causal relationships among variables in detail
from the data-generation perspective, we propose two improvements strategies. First, we argue that the causal
relationships between user preferences and model decisions play a key role in alleviating the spurious association.

ACM Trans. Inf. Syst.
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Therefore, we construct a causal graph to analyze the selection bias problem. Second, we design an unbiased
estimation paradigm for the MC recommendation task, which improves the accuracy of the model.

2.3 MC Rating Recommendation Methods

The multi-dimensional user preferences included in MC ratings provide important decision support for RSs
[30, 37]. Adomavicius et al. [2] summarized and defined a class of MC decision making problems in RSs. The
existing MC rating recommendation methods are categorized into the heuristic-based methods [2] and the
model-based methods [36].

In early MC research, the heuristic-based methods achieved prediction by using certain assumptions [43].
For example, some efforts [1, 13] measured MC preferences among users leveraging collaborative filtering, that
is, similar users have similar preferences in the future. However, the sparse data characteristics greatly hinder
the performance of these methods. In the subsequent development of MC recommendation, the model-based
methods improved the performance of RSs by introducing some advanced techniques. For example, Li et al. [38]
used multilinear singular value decomposition to explore the association between among criteria. Tallapally et al.
[55] proposed an extended stacked self-encoder to efficiently model the relationship among user criteria and
overall rating. Park et al. [44] made the first attempt to introduce GNN to MC scenarios to model collaborative
signals through the constructed bipartite graph.

The existing MC methods mainly adopt the data-driven paradigm to learn the correlations in the data for
decision-making purposes [1]. The opacity of this training paradigm may trigger spurious association that
continually amplify the bias problem. Different from the above methods, we propose a debiasing framework
through causal inference that leverages the back-door adjustment to construct new training and inference
strategies for mitigating bias.

3 PROBLEM DESCRIPTION

In this section, we introduce the key notations used in this paper and illustrate the MC rating recommendation
task through three definitions.

In general, let U = {ul, U, ..., u|ru|} and 7 = {il, i, ..., i|I|} denote the set of users and items, respectively,
where |U| and | 7| are the number of users and items, respectively. We describe the recommendation task in the
MC rating scenarios by the following definitions:

DEFINITION 1. (MC Rating Matrices). The MC rating interaction record of users for items is represented as a set of
matrices R = {RO, R RK}, where R° represents the overall rating matrix (target rating), {Rl, R2 ..., RK}
is the set of rating matrices on the other K criteria (auxiliary criteria), Rk e RIUXITI gnd rl’;i represents the rating
value of an item i by a useru in the kth criterion matrix Rk, ke{0,1,...,K}.

DEFINITION 2. (MC Interaction Graphs). Constructing heterogeneous user-item interaction graphs in MC scenarios
based on R. We split the heterogeneous information of each criterion into a bipartite graph set G = {go, G...., QK},

k _ k _ . k- . . ks
where G~ = {‘V & } V = UV I is the set of nodes, and E" is the set of edges (in this paper,we set that ifr, ; is
greater than the median, then there exists an edge connecting between u and i in G*). Based on this, this set G of
bipartite graphs is represented using a tensor X € RIUIXIZIXIK+1] yypepe x{f’i =1 if the edge represented by r']j,l. exists,
and x’ljl. = 0 otherwise.

DEFINITION 3. (MC Top-N Recommendation Task). Given the sets of users U and items I, and the MC tensor
X e RIUXITIXIKH the o0al of MC Top-N recommendation is to predict the interaction probability of items that do
not interact with u, i.e., f,; = f (u,i), where f (-) is the prediction function of the recommendation model and 7, ; is

the interaction probability of u with i. Finally, the set of top N ranked items is recommended for u based on all the
predicted values 7, ;.
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Table 1. Summary of Key Notations.

Notations Description

u, U The user u and the sample space of users;
i, I The item i and the sample space of items;
K The number of criteria;
R The set of MC rating matrices;
RO The overall rating matrix;
RF The rating matrix of the kth criterion;
G The set of user-item interaction graphs;
G° The interaction graph corresponding to the overall rating matrix;
GF The interaction graph corresponding to the rating matrix of the kth criterion;
V,EF  The set of nodes and the set of edges in G¥;
rl]j’i The rating of item i by user u in Rk
e, ek The global embedding of u and the local embedding of the kth criterion view;
e, ef The global embedding of i and the local embedding of the kth criterion view;
a The attention coefficient among the different criteria;
ey, €; The final embedding of user u and the final embedding of item i;
mk The preference of user u for criterion k;
L The number of GNN layers;
n The BPR loss coefficient for the MC ratings;
A The loss coefficient for self-supervised learning;
T The temperature coefficient;

Table 1 lists the key notations used in this paper and their descriptions.

4 METHODOLOGY

In this section, we first propose a causal perspective in MC recommendation scenarios to explain why selection
bias is amplified and design a causal intervention strategy to mitigate the bias problem (see subsection 4.1). Next,
we construct a modeling framework suitable for the MC rating tasks (see subsection 4.2). Finally, we introduce
the optimization objective of the proposed MCCR (see subsection 4.3).

4.1 A Causal View of MC'Scenarios

To achieve the purpose of mitigating bias in the MC recommendation task, we construct a causal graph based on
the SCM from the perspective of data generation to explore the causal relationships between user feedback and
model predictions.

4.1.1 Causal Graph. Fig. 2a illustrates the causal graph of the traditional methods, which achieves prediction
based on the user-item matching mechanism. In this causal graph, U and I (latent variables) denote learned user
representation and item representation, respectively, and R (observed variable) denotes the rating information,
including MC ratings and overall rating. For example, many classical models [44] usually predict the rating R by
calculating the inner product of the user representation U and the item representation I.

To investigate the bias problem in the MC scenarios, we modify the causal graph, as illustrated in Fig. 2b, and
introduce the variable M (observed confounding) to represent the users’ historical preference distribution over
the K criteria. In the collected observation data, users exhibit significant differences in their rating behaviors
for different criteria. Specifically, the frequency of user ratings on the criteria show an obvious imbalanced
distribution (i.e., data bias). During model training, M directly affects the learning of user representations U,
making it tend to reinforce the criterion of high-frequency ratings. This is attributed to the fact that U is optimized

ACM Trans. Inf. Syst.
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(B) °
O latent O observed O confounding

(a) Traditional methods. (b) Consider confounding. (c) Cut the back-door path.

Fig. 2. Causal graphs for MC recommendation scenarios. The hollow circle indicates latent variables, the solid circle indicates
observed variables, and the red circle indicates confounding variable. Specifically, U and I denote the user representation
and the item representation to be learned (latent), respectively, R denotes the rating information (observed), including MC
ratings and overall rating, and M denotes the users’ historical preference distribution over the K criteria (confounding).

to fit the imbalanced historical data. As the model is trained iteratively, the bias problem will be gradually
amplified in the feedback loop. For example, for K criteria, the criterion that is rated more times in historical
behavior will obtain a higher prediction score.

Next, we reveal the reasons behind bias amplification from acausal perspective. It can be seen in Fig. 2b
that two paths are formed from U to R: U —» Rand U < M — R.In general, path U — R is used to capture
the loyalty preferences of users. However, path U « M — R results in higher predictive scores for the high-
frequency rating criterion, which significantly increases the likelihood of exposure for the corresponding items.
According to the causal theory of the SCM [45], M opens the back-door path U <~ M — R as a confounder,
which may generate spurious association in the estimations between U and R. Therefore, avoiding the influence
of exposure mechanism on the model when estimating user preferences is crucial to mitigate the bias problem.
The explanations of all variables and edges are as follows:

e Node U denotes the user representation. For a user u, the representation ek € R on the criterion view k
is an ID-based embedding vector, where d is the embedding dimension.

e Node I denotes the item representation. For example, ef € R? is the representation of item i on the
criterion view k.

e Node M denotes the users historical preference distribution over the K criteria. Specifically, we formalize
M by normalizing the frequency of ratings that exceed the median for each criterion in the training set,
ie, M = (m;,my,.. .,m|(u|)T, M € RIUIXK where m, € RK represents the preference distribution of
user u over K criteria. For example, in Fig. 1c, K = 4, and for user u;, m; = [0.1137,0.2226, 0.1852, 0.4785].

e Node R denotes the rating information, including the MC ratings and the overall rating.

e Edge M — U indicates that the users’ historical preference distribution affects the learning of the user
representation U, which is attributed to the fact that the model is optimized to fit imbalanced behavioral
data. This optimization mechanism amplifies the bias problem in the feedback loop, leading to a shift
of the learned representation towards the space dominated by the high-frequency rating criterion. For
example, in Fig. 1c, user u; prefers the movie’s visuals. With the iterative training of the model, RSs may
transiently recommend visual movies to u;.

e EdgesU — R,I — R, and M — R represent that the user, the item, and the user’s MC preferences
jointly determine the final interaction probability. For example, a user u evaluates an item i from multiple
dimensions based on their MC preferences, and obtains MC ratings and overall rating.

ACM Trans. Inf. Syst.
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To eliminate the negative impact of spurious association on the model, we extend the causal graph to Fig. 2c by
cutting off the back-door path U <— M — R. Different from the correlation modeling paradigm of previous works
[44, 51], this paper aims to identify the causal effect between U and R to achieve unbiased estimation in MC
rating recommendation. Fortunately, the back-door adjustment provides a viable solution for this purpose. The
causal theory [45] proves that the intervention probability after cutting off the back-door path can be estimated
from the observed data. This means that we can infer unbiased interaction probabilities from historically collected
MC data through the back-door adjustment without any actual intervention (see Section 4.1.3 for details).

4.1.2  Bias Analysis. To explore the reason why bias is amplified in MC recommendation scenarios, we analyze
the modeling paradigm of the existing MC works according to Fig. 2b. Traditional methods employ data-driven
modeling to estimate the interaction probability P(R|U,I),

PQRIUD E S P(RmUD)
m

2 SN P (RIU.Lm) P (m]U. 1)
m

(1)
© > P (RIULm) P (m|U)

@ > P(RIU.Lm) P (U|m) P (m).

where step (a) follows the law of total probability, i.e., summing overall possible values of M; Step (b) decomposes
the joint probability P (R, m|U, I) as the product of P (R|U, I;m) and P (m|U, I); In step (c), M and I are independent
of each other according to Fig. 2b, therefore P (m|U) = P (m|U, I); Step (d) follows the Bayes rule.

Due to the disturbance of P (U|m), the probability P (R|U, I)»will be dominated by the user’s historical prefer-
ences. That is, users are more inclined to select items that match with their historical interests, and these items
will have a higher probability of being exposed. In this scenario, P (U|m) causes spurious association, and the
bias problem of RSs will become more and more serious after continuous iterative training. Therefore, it is key to
alleviate bias by changing the exposure strategy during the inference stage, which will allow each item to be
recommended fairly.

4.1.3  Back-Door Adjustment Strategy. To achieve debiasing by identifying the causal effect between U and R, we
estimate the impact of the intervention do (U, I) on R with the back-door adjustment (Fig. 2c). P (R|do (U, I))
is the conditional probability after blocking the back-door path U <~ M — R, and the adjustment formula is

derived as

P (Rldo (U, 1)) ¢ P, (RIU, T)

2> Py (RIU.1m) Py (m|U, I)
m

€ > Py (RIU.Lm) Py (m) @

2N PRIULm)P (m),

where step (a) is the estimation of the manipulation probability P, (-) after cutting off the U < M — R by
do (U, I); step (b) follows Bayesian theory; step (c) follows Fig. 2c, where U and I are independent of M, i.e.,
Py (m) = Py (m|U,I); in step (d), the marginal probability P (m) is invariant before and after the intervention,
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i.e, P (m) = P; (m), and the conditional probability P (R|U, I, m) is invariant due to the fact that the response
function of R with U, I, and M is fixed whether U changes spontaneously or is manipulated to change by the
intervention, i.e., P (R|U,I,m) = Py (R|U, I, m).

Inspired by [72], we estimate P (R|do (U, I)) from both training and inference stages:

Train. In the training phase, we predict the corresponding interaction probability based on the rating infor-
mation of each criterion. For criterion k, the probability P (R|U, I, m) is estimated given U = ek, I = ef , and the
user’s preference mk for the criterion,

£ (ek ek mk) )

© LeakyReLU ((eﬁ)Tef) X Sigmoid ((mﬁ)’/) ,

P(R = r{f’i|U —ek 1=efm=mk )
(@

where f(-) in step (a) is the learning framework of the model, and we employ a decoupling manner as shown in
step (b). This decoupling is applicable to any recommendation model backbone, which ensures the generality of the
proposed debiasing framework. eX and e{.‘ are representations of user u and item i in criterion k, respectively. m~
denotes the degree of user preference for criterion k. LeakyReLU (-) and Sigmoid (-) are the activation functions,
and y is a hyperparameter.

We approximate the user’s historical preference distribution mX on the criterion k as

K exp (LeakyReLU(g))

u” >K exp (LeakyReLU(qfl))’
G = Ni/Nis (4)
N,f = ZieN5 ]I(rllj’i > mediank),

NO = ZicAl I[(rﬁ,- > median®),

u

where ¢& denotes the rating frequency of user # on criterion k, N* and N? denote the number of interactions
of the training set on criterion view k and overall rating view, respectively, N¥ denotes the item set that u
has interacted with on view k; median® denotes the median of the rating ranges on view k, I(-) is an indicator
function, and I(-) = 1 if () is true, otherwise, I(-) = 0.

Inference. In the inference phase, the goal of this paper is to achieve unbiased estimation according to the
intervention probability P (R|do (U, I)). Equation 1 indicates that the traditional correlation modeling paradigm
P (R|U, I) may result in bias being continuously amplified during the model iteration process. Therefore, we hope
to correct the bias problem of the model by changing the exposure mechanism of the items. Formally,

P (R = r,]j’l-|do (U ek 1= ef))
(@)
= ZP (r]u‘i|eﬁ, ek, mﬁ) P (mﬁ)
k
mu

@ f (eﬁ, ek, Dimk (mﬁ)”P(m’,j))

© LeakyReLU ((e’,j)Tef) x Sigmoid (E(M)Y),

©)

where E (M) is the expectation of the user’s historical preference M. The inference strategy allows each item to
be fairly exposed without being interfered by P (U|m). Different from the traditional single-criterion methods, it

ACM Trans. Inf. Syst.
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Fig. 3. The overall framework of the MCCR. (a) In a MC case on hotel recommendations, four rating criteria are included. (b)
We construct the interaction graph set G based on the overall rating and each criterion. (c) In G*, the local embedding ek O
and global embedding e( ) of node neighbors are aggregated to generate the vector ev in a specific view, and the dependency
among the criteria is captured based on the attention mechanism to get the representation e, in the target view, and the
BPR loss Ly, is constructed. (d) The contrastive loss L.} among the target view and the auxiliary criteria is constructed.
Finally, we joint Ly, and L. and achieve optimization and prediction according to the training and inference strategies

Egs. 3and 5.

is necessary to develop a framework that can specifically deal with MC ratings for the recommendation backbone
model f (-). In section 4.2, we describe how to implement f (-) to build a recommendation framework for MC
scenarios.

4.2  MC-aware Graph Representation Learning

In this subsection, we develop the MCCR framework for MC Top-N recommendation task, which exploits higher-
order connectivity to recursively propagate the embedding representations. The overall architecture of the MCCR
is shown in Fig. 3. The MCCR learns the embedding representations of users and items based on GNN, and its
framework contains two modules, single-criterion feature aggregation module and MC information propagation
module, respectively.

4.2.1 Single-Criterion Feature Aggregation Module. This module is used to model the representations of users
and items on each criterion view. Specifically, we adopt graph convolution operations to aggregate feature
information from the neighborhood of node and update the embeddings in the criterion-specific interaction
graph. For convenience, we employ v to denote a node in the view (either a user or an item). In view G, the

embedding of v in the Ith layer is obtained by the aggregation function eﬁ’(l) = g(ez(,l_l) . (l 1))

e’;,(l) — o(e(l D wd

MeanMean({e5 . vo € NE), ©

k() . (I-1)

is the embedding of v in the Ith layer in G, e,
=1 is the local embedding for capturing user preferences in a specific

where v € {u,i}, e, is the shared global embedding for
information transfer among criteria, e o
criterion, W](Vll)ean € R%*4 is the weight matrix, NV’ ﬁ is the set of neighbors of v, and Mean (-) computes the average

of all neighbor embeddings, o (-) is the ReLU activation function.

4.2.2  MC Information Propagation Module. This module models the heterogeneity of user preferences in higher-
order MC ratings by aggregating the embedding representations under different criterion views. After coding
the embeddings of G* for a particular criterion, we model the dependencies among the different criteria. For
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Algorithm 1 The algorithm of the MCCR

Input: The MC graph set G = {QO, Gl ..., QK}, where GF = {‘1/, Sk}; The user’s historical rating distribution
M=(m;,my,.. .,m|(u|)T, where m,, € RK

Output: Predicted probability 7, ; = f (u, i)

Initialize the embeddings ef’(l) and ez(,l) ;

while MCCR not converge do

forv=1toV=|UUT|do

Update elf,’(l) by Eq. 6 ;

Integrate Cz(,l) — {e},’(”,ei’(l), . ..,ef’(l)} ;

Calculate the attention agl) by Eq. 8;

Obtain ez(,l) by Eq.7;
() o
l

u >

Obtain e,, e; «— e

end

s 4 sk k .k k.
Predict 7, < eg, €7, my;

Calculate the BPR loss Lypr by Eq. 12;
Calculate the CL loss L,; by Eq. 13;
Obtain loss £ « Ly, + A1 Loy + A2 ||®||§;
Update parameters with Adam

end

Inference #,,; < ey, e;, E(M)

denotes its set of embeddings under K criteria, where Cz(,l) € RKxd,

any node o, Cz(,l) = {e},’(l), ei’(l), . -,elzf’(l)}

Considering the differences in users’ preferences, we introduce a graph attention mechanism to measure the
degree of association among the target rating and the auxiliary criteria,

l L (1- - -
ey’ = a(eg™ + ((af ")), (7)

U=1) ¢ gKx1

where o is the matrix of attention coefficients, which reflects the dependence of v with respect to

(I-1)

the other criteria. o is calculated as:

! = Softmax(Sigmoid (W' (¢S T)TW{ el ")), (8)
where Softmax (-) is used for normalization , WEI) € R4 and ng) € R?*4 are the parameter matrices to be
learned.

To inject different layers of higher-order features into the node’s embedding learning, we leverage mean
pooling to drive a context-aware propagation structure that obtains the final embeddings of users and items,

| N 0)) 1ot .
€, = Zzlzoeu ) ei:zZl:Oei ) )

where e, and e; denote the embedding of user u and the embedding of item i after aggregating MC feature
information, respectively.

ACM Trans. Inf. Syst.



12 « Guoetal.

4.3 Prediction and Optimization

In this subsection, we introduce the prediction and optimization objectives of the MCCR. For criterion k, we
predict the interaction probability between u and i according to Eq. 3 derived from the framework f (-),

f’uc’i = LeakyReLU ((eﬁ)Tef) % Sigmoid ((mﬁ)”) , (10)

where f‘l’fl. is the predicted value, which represents the potential preference of the user u for the item i on criterion
k.
We construct the Bayesian Personalized Ranking (BPR) loss in G,

e 3 tofelhi- ) <n>

(u,i,j) €Ok

where OF = {(u, L, )| (ui) € G*, (u,j) ¢ Qk}, k €{0,1,...,K}, and (u, j) is a randomly sampled set of negative
sample pair.
The overall BPR loss is

1
prr = ‘EI(;pr + rll?zlk(zl‘glljpr’ (12)

where 7 is a hyperparameter, which is used to adjust the strength of the MC ratings for model update during the
training process.

In addition, we design a self-supervised contrastive loss among the overall rating and the criteria. This loss
makes it possible for the MCCR to obtain more robust representations of users and items by maximizing the
consistency among the different criteria. Thus, even in data sparse scenarios, the MCCR can utilize knowledge
transfer among criteria to make effective and accurate recommendations. The self-supervised loss on criterion k
is

exp (s(e., €5)/7)
ZU’Q’VJ#U’ exp (s(em e];,)/T) ’

k
"Ecl = _Zve’Vlog (13)
where 7 is a hyperparameter for controlling contrast intensity, and s(-) is a cosine similarity function to compute
positive or negative samples. The overall contrastive loss is L = £g[ + L?l +- 4+ Lfl.

Finally, the optimization-objective for training is obtained as:

L= Lypr+ 4L+ 20l (14)

where 1, is the hyperparameter and A, is used for regularization to prevent overfitting. For the inference of the
model, we realize it by #,; = LeakyReLU ((e,)”e;) and perform Top-N unbiased recommendations.
The pseudo-code of the MCCR is shown in Algorithm 1.

5 EXPERIMENTAL RESULTS AND ANALYSIS
We validate the performance of MCCR by exploring the following four research questions:

e RQ1: How does the MCCR perform in MC scenarios compared to the existing data-driven methods?

e RQ2: How does the debiasing performance of the MCCR compare to the existing methods based on causal
inference?

e RQ3: How do different components affect the recommendation performance of the MCCR?

e RQ4: How do differences in hyperparameter settings affect the MCCR performance?

ACM Trans. Inf. Syst.
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Table 2. Dataset statistics. #Overall and #MC denote the interaction numbers of overall rating and MC ratings, respectively,
and K denotes the number of criteria.

Statistics TripAdvisor Yahoo!Movie RateBeer Yelp-2022

#Users 4,265 1,821 4,017 58,971
#Items 6,275 1,472 3,422 19,820
#Overall 34,383 46,176 159,755 445,724

#MC 202,859 175,468 607,067 1,408,487
K 7 4 4 3
Sparsity 1.27E-03 2.07E-02 1.39E-02  5.29E-04

5.1 Experimental Settings

5.1.1 Datasets. We conduct our experiments on four MC datasets. These datasets include rating information of
different criteria:

e TripAdvisor' statistics from the travel website contain rating data for hotels around the world. This
includes overall rating and ratings for seven criteria such as business, quality, cleanliness, location, rooms,
service and value. All ratings range from 1 to 5 on the scale.

e Yahoo!Movie? comes from the online movie platform and includes an overall rating and four criteria:
story, acting, direction and visuals. All rating criteria range from 1 to 5.

e RateBeer® is about beer ratings and contains an overall rating and ratings by four criteria: appearance,
aroma, taste, and palate. The ratings vary from 1 to 5 (appearance and palate), 1 to 10 (aroma and taste),
and 1 to 20 (overall rating).

e Yelp-2022* provides rating information about restaurants and includes interactive information on several
criteria, such as the number of votes for the criteria cool, funny, and useful, in addition to an overall rating
on a scale of 1 to 5.

We construct unbiased test environment by adopting the classical random splitting strategy. That is, each item
in the test set has an equal probability of being selected. We convert the data format to implicit feedback in
constructing the graph-structured data. When an interaction is marked as 1, it means that the user has positively
evaluated the item. There are K + 1 graphs constructed, including one graph corresponding to the overall rating
and K graphs corresponding to the MC ratings. The positive rating threshold for each dataset is set as their
median. We randomly select a negative sample labeled 0 for training. Table 2 shows the statistics of the four
datasets.

5.1.2  Baselines. We compare the MCCR with 16 baselines, including the data-driven recommendation methods
(both the single-criterion recommendation methods and the MC recommendation methods) and the causal
inference-based recommendation methods. For the single-criterion methods, we select five representative
GNN-based models and train them only on the overall rating matrix. For the MC recommendation methods, we
select six state-of-the-art models proposed in recent years. For the causal inference-based recommendation
methods, we chose two classical RCM methods and three popular SCM methods.

The single-criterion recommendation methods

GC-MC [7] employs graph autoencoder for link prediction to achieve recommendation.
SpectralCF [76] models collaborative filtering tasks by spectral convolution on a graph.

NGCEF [61] utilizes graph neural networks to propagate collaborative signals in embedding learning.
DGCEF [62] model fine-grained user intents by disentangling graph collaborative filtering.

http://tripadvisor.com/
2http://movies.yahoo.com/
3https://www.ratebeer.com
“https://www.yelp.com/dataset
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e LightGCN [24] is an efficient graph convolutional recommendation framework.
The MC recommendation methods.

UBM [77] uses a ranking strategy to model the MC recommendation task.

DMCEF [42] implements the MC collaborative filtering model with deep neural networks.

AEMC [51] mines user preferences in MC scenarios with deep autoencoder.

CFM [13] predicts overall user ratings by automatically weighting MC ratings.

LightGCN-MC [24] is LightGCN being applied to MC rating scenarios.

CPA-LGC [44] mines users’ MC preferences and complex higher-order relationships with graph convolu-
tional neural networks.

The causal inference-based recommendation methods.

IPW [50] is an inverse probability weighting method for dealing with sample imbalance or selection bias.
DR [32] is a double robust method that combines IPW and regression models.

PDA [72] is a causal method used to alleviate the popularity bias.

DecRS [59] is a backdoor adjustment method used to mitigate amplified bias.

DCEF [64] is a deconfounding collaborative filtering method based on multiple causal inference.

5.1.3  Evaluation Metrics. To validate the Top-N performance of the MCCR, we use three common evaluation
metrics in RSs: Hit Ratio (HR), Recall, and Normalized Discounted Cumulative Gain (NDCG). The three metrics
measure the accuracy of the model and the ranking quality of Top-N recommendations. HR is used to evaluate
whether the model successfully predicts the items interacted with in'the user’s real list. Formally,

HR@N = = > $(R(w) N T(u) # 0), (15)
|7/{| uel

where T (u) represents the real interaction list, R(u) represents the recommendation list, () represents the empty
set, and @(-) represents an indicator function that ¢(-) =1 if - is true, otherwise ¢(-) = 0.
Recall is used to measure the proportion of all positive samples that are correctly recommended by the model.
Formally,
1 |R(u) N T (u)]
> :

Recall@N = —
T ()]

U (16)

uel

NDCG is used to evaluate the ranking order and true relevance of recommended items, not just hits. Formally,

(17)

1 1 " $(Rw); € T(w))
NDCG@N = —— : :
|U| MGZ;J Z;r:;l(\T(u)l,N) logzgm) ; log, (i + 1)
5.1.4  Hyperparameter Settings. For a fair comparison, we set the experimental parameters uniformly. The datasets
are divided into 80% training set and 20% test set. All models employ the Adam optimizer to train the network.
The mini-batch size is set as 2048. The embedding dimension is set as 64. The learning rate is searched in the range
{le — 4, 1e — 3, 1e — 2}. The number of layers L is tuned in the range {2, 4, 6, 8}. The L, regularization coefficient
Az is tuned in the range {le — 5, 1e — 4, e — 3, 1e — 2, 1e — 1}. In the MCCR, the BPR loss coefficient 7 and contrast
loss coefficient A; are tuned in the range {0.2,0.4,0.6,0.8,1.0}, and the temperature coefficient 7 is tuned in the
range {le — 5,1e — 4,1e — 3, 1e — 2, 1e — 1}. The Top-N recommendation list is set as N = 20 and N = 50. For
specific hyperparameters in the baseline models, we follow the recommendations of the original paper settings.
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Table 3. Performance comparison of MCCR and data-driven models on TripAdvisor and Yahoo!Movie.

Datasets TripAdvisor Yahoo!Movie
Top-20 Top-50 Top-20 Top-50

Model H@20 R@20 N@20 | H@50 R@50 N@50 | H@20 R@20 N@20 | H@50 R@50 N@50
GC-MC [7] 0.0746 0.0368 0.0135 0.1118 0.0604 0.0238 0.4665 0.1512 0.1603 0.6076 0.2668 0.1951
SpectralCF [76] 0.0652 0.0322 0.0396 0.1025 0.0561 0.0554 0.4597 0.1496 0.1637 0.5913 0.2619 0.1983
NGCF [61] 0.1073 0.0491 0.0411 0.1414 0.0702 0.0552 0.4532 0.1443 0.1846 0.5825 0.2583 0.2092
DGCF [62] 0.1104 0.0504 0.0621 0.1537 0.0776 0.0761 0.5173 0.1586 0.1866 0.7002 0.2713 0.2083
LightGCN [24] 0.1239 0.0626 0.0633 0.1709 0.0845 0.0767 0.5415 0.1626 0.1819 0.7386 0.2807 0.2097
UBM [77] 0.0922 0.0475 0.0382 0.1372 0.0697 0.0443 0.1519 0.0634 0.0727 0.3744 0.1453 0.1139
DMCF [42] 0.0756 0.0393 0.0145 0.1066 0.0595 0.0335 0.3038 0.0996 0.1252 0.4185 0.1788 0.1805
AEMC [51] 0.0734 0.0387 0.0236 0.1197 0.0622 0.0322 0.3157 0.1088 0.1244 0.4538 0.1957 0.1886
CFM [13] 0.1085 0.0519 0.0508 0.1433 0.0718 0.0569 0.4272 0.1375 0.1483 0.5235 0.2506 0.1968
LightGCN-MC [24] | 0.1372 0.0662 0.0667 0.1868 0.0991 0.0786 0.5628 0.1759 0.1836 0.7552 0.2906 0.2175
CPA-LGC [44] 0.1441 0.0719 0.0843 0.1975 0.1032 0.0963 0.5651 0.1843 0.1927 0.7583 0.2955 0.2388
MCCR-GNN 0.1507 0.0764 0.0855 0.2021 0.1064 0.0981 0.5833 0.1918 0.2346 0.7669 0.3017 0.2657
MCCR(Ours) 0.1662* 0.0837° 0.0904* | 0.2166" 0.1108" 0.1025" | 0.6419" 0.2066" 0.2853" | 0.7981" 0.3234" 0.3593"*
%improv. 15.34%  16.41% 7.24% 9.67% 7.36% 6.44% 13.59%  12.10%  48.05% 5.25% 9.44% 50.46%

The bold score denotes the best experimental result and the underlined score indicates the best baseline. %improv. denotes the relative improvement
of MCCR compared to the best baseline. “*” denotes statistically significant improvement compared to the best baseline (p-value < 0.01).

Table 4. Performance comparison of MCCR and data-driven models on RateBeer and Yelp-2022.

Datasets RateBeer Yelp-2022
Top-20 Top-50 Top-20 Top-50

Model H@20 R@20 N@20 | H@50 R@50 N@50 | H@20 R@20 N@20 | H@50 R@50 N@50
GC-MC [7] 0.7592 0.3188 0.3005 0.8283 0.4523 0.3556 0.2477 0.1018 0.0795 0.3711 0.1225 0.0796
SpectralCF [76] 0.7465 0.3033 0.3022 0.8122 0.4461 0.3534 0.1366 0.0705 0.0532 0.2667 0.0897 0.0603
NGCF [61] 0.7551 0.3128 0.3065 0.8305 0.4597 0.3369 0.2879 0.1273 0.0857 0.3928 0.1427 0.0862
DGCF [62] 0.7325 0.2993 0.2995 0.7917 0.4332 0.3183 0.2886 0.1292 0.0809 0.3993 0.1486 0.0785
LightGCN [24] 0.7573 0.3165 0.3088 0.8129 0.4468 0.3505 0.2925 0.1337 0.0966 0.4009 0.1858 0.0967
UBM [77] 0.3925  0.1169  0.1539 | 0.5533 03256  0.1562 | 0.1539 . 0.0935  0.0457 | 0.3051  0.0922  0.0689
DMCEF [42] 0.4733 0.1617 0.2116 0.6518 0.3705 0.2338 0.1416 0.0882 0.0556 0.2238 0.0869 0.0721
AEMC [51] 0.5886 0.2196 0.2879 0.7173 0.4053 0.2781 0.1354 0.0696 0.0671 0.2126 0.0835 0.0809
CFM [13] 0.6879 0.2768 0.2925 0.7664 0.4287 0.2993 0:2566 0.1072 0.0768 0.3897 0.1276 0.0828
LightGCN-MC [24] | 0.7631 0.3291 0.3153 0.8671 0.4652 0.3557 0.2973 0.1359 0.0998 0.4115 0.2061 0.1034
CPA-LGC [44] 0.7866 0.3303 0.3225 0.8867 0.5044 0.3688 0.2985 0.1383 0.1019 0.4265 0.2297 0.1215
MCCR-GNN 0.8012 0.3397 0.3661 0.8952 0.5128 0.4626 0.3004 0.1397 0.1123 0.4291 0.2335 0.1383
MCCR(Ours) 0.8557* 0.3562° 0.4166" | 0.9388"  0.5309" 0.5175" | 0.3152* 0.1475" 0.1275" | 0.4433" 0.2456* 0.1687"
%improv. 8.78% 7.84% 29.18% 5.88% 5.25% 40.32% 5.59% 6.65% 25.12% 3.94% 6.92% 38.85%

The bold score denotes the best experimental result and the underlined score indicates the best baseline. %improv. denotes the relative improvement
of MCCR compared to the best baseline. “*” denotes statistically significant improvement compared to the best baseline (p-value < 0.01).

5.2 Overall Performance (RQ1)

In this subsection, we evaluate the performance of MCCR with the traditional data-driven methods and compare
the performance of MCCR with the baselines in data-sparse scenarios.

5.2.1 Performance Comparison with the Data-driven Methods. We report the recommendation performance of
the MCCR with the data-driven baselines on Top-20 and Top-50. Tables 3 and 4 show the overall performance of
all models on the four MC datasets. We perform a t-test on the best baseline (p-value < 0.01) to ensure that the
performance improvement of the MCCR is statistically significant. In addition, we report a variant of the MCCR,
named MCCR-GNN, which removes the debiased inference strategy and implements recommendations based
only on the proposed GNN framework. The MCCR-GNN is used to evaluate the effectiveness of the developed
GNN framework in MC scenarios. We summarize the following conclusions according to the experimental results:

o In the four MC recommendation scenarios, the proposed MCCR consistently outperforms all baselines
on three metrics. This improvement validates the effectiveness of the MCCR, which is attributed to its
ability to mine complex user preferences and capture the causal relationships between user behavior
and recommendation decisions. Compared to the best baseline, the MCCR achieves an average of 16.07%
improvement across all datasets. Especially on Yahoo!Movie, the MCCR improves the metric N@50
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by 50.46%. In addition, the superior performance of the MCCR validates our rationality in extracting
higher-order heterogeneous relationships in MC data and mitigating bias.

e Compared to a single overall rating, MC ratings can help the model generate better recommendation
decisions. From the experimental results, we can see that Light GCN-MC consistently outperforms Light-
GCN in Top-N recommendation performance. This enhancement stems from fine-grained modeling of
the heterogeneous user preferences contained in MC ratings. As described in the introduction, although
two users have similar overall ratings, their preferences in MC ratings may be opposite. As a complement
to the supervisory signals, the auxiliary information underlying MC ratings can effectively improve the
recommendation quality and accuracy of the model during the modeling process. In Subsection 5.4, we
verify the rationality of MC ratings in improving recommendation performance through more detailed
experiments.

e Among the various MC recommendation methods, UBM, DMCF and AEMC perform/poorly and even
lag behind certain single-criterion methods (e.g. NGCF, DGCF, LightGCN, etc.). We believe that this may
be due to the fact that the former model user preferences based on the learning paradigm of multi-layer
perceptron, which is difficult to effectively capture the multi-dimensional behavioral characteristics of
users. On the contrary, although the latter only make recommendation decisions based on the overall
rating matrix, they utilize the GNN to model the user-item bipartite graph, which is able to effectively
extract higher-order information from the user’s historical interactions. These results indirectly reflect
the advantages of GNN in modeling MC ratings.

e MCCR-GNN outperforms all baselines on the Top-N task.Even after removing the debiased inference
strategy, MCCR-GNN maintains the best recommendation performance. We attribute this superiority to
three aspects: 1) The constructed shared global embedding and the local embedding of the MC interaction
graph can effectively capture the heterogeneity in user behavior; 2) The developed graph attention
aggregation mechanism can effectively fuse the user’s dependence on different criteria. 3) The designed
self-supervised loss can effectively improve the robustness of user representation and item representation
through cross-view knowledge propagation.

o The performance of the MCCR is further significantly improved compared to the MCCR-GNN. This is
attributed to its property of mining causality according to the back-door adjustment during inference. After
removing the causal intervention, MCCR-GNN achieves the prediction purpose based on the correlation
modeling paradigm P(R|U,I). We argue that this paradigm may limit the recommendation quality of the
model due to spurious association caused by the back-door path. In contrast, the MCCR implements Top-N
recommendation based on the causal modeling mechanism P(R|do(U, I)). This mechanism effectively
mitigates the negative impact of spurious association on the model, thereby improving the decision
accuracy of RSs.

5.2.2  Performance Analysis in Sparse Scenarios. Although MC ratings provide rich auxiliary information, this
also significantly increases the sparsity of the data. To examine the performance of the MCCR in sparse scenarios,
we attack the number of interactions in the overall rating matrix and the MC rating matrices. Specifically, we
reduce the proportion of positive samples in the training set by randomly removing user-item interaction pairs.
The sparser environment constructed by this approach can comprehensively evaluate the performance of the
MCCR compared to existing baseline methods. We progressively remove the number of training samples at a rate
of 10%, 20%, 30%, 40% and 50%, respectively.

Figure 4 illustrates the comparison of Top-20 recommendation performance on the four MC datasets. Overall,
the proposed MCCR consistently outperforms other baseline models in different sparse scenarios. It can be seen
that as the proportion of positive samples in user interactions continues to decrease, the performance of each
model shows a downward trend, but the decline speed of the MCCR appears more gentle compared to the other
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Fig. 4. Top-N performance in sparse interaction scenarios.
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baseline models. On the one hand, this phenomenon can be attributed to the unique design of the MCCR, in
particular the contrast loss introduced among the overall rating view and the MC rating views. The optimization
goal is to make the model.more focused on learning stable and discriminative feature representations by enhancing
the “positive” and “negative” contrasts among samples. In other words, this self-supervised optimization strategy
can effectively filter out irrelevant interaction noise, thereby improving the robustness of the model in sparse
scenarios..On the other hand, we argue that the superiority of the MCCR also stems from the contribution of
causal inference to model prediction. The MCCR deeply mines the causal relationships between user behavior and
recommendation decisions through the proposed causal graph. This prior knowledge based on causal inference
reduces the model’s dependence on data to a certain extent, thereby enhancing its generalization ability and
enabling the model to make accurate predictions even in sparse environments.

5.3 Debiasing Performance (RQ2)

In this subsection, we evaluate the performance of the MCCR with the existing causal methods and compare the
debiasing performance of the baseline methods on different backbone models.

5.3.1

Performance Comparison with the Debiasing Methods. We report the debiasing performance comparison of

the MCCR with five causal methods in four MC scenarios. All methods employ the constructed MCCR-GNN as
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Table 5. Debiasing performance comparison of MCCR and causal models on TripAdvisor and Yahoo!Movie.

Datasets TripAdvisor Yahoo!Movie
Top-20 Top-50 Top-20 Top-50
Model H@20 R@20 N@20 | H@50 R@50 N@50 | H@20 R@20 N@20 | H@50 R@50 N@50
MCCR-GNN 0.1507 0.0764 0.0855 0.2021 0.1064 0.0981 0.5833 0.1918 0.2346 0.7669 0.3017 0.2657
IPW [50] 0.1503 0.0761 0.0852 0.2022 0.1063 0.0979 0.5867 0.1921 0.2355 0.7672 0.3038 0.2691
DR [32] 0.1506 0.0759 0.0857 0.2027 0.1065 0.0985 0.5871 0.1928 0.2358 0.7673 0.3044 0.2706

PDA [72] 0.1522 0.0775 0.0863 0.2055 0.1068 0.0989 0.6028 0.1944 0.2391 0.7734 0.3095 0.2881
DecRS [59] 0.1593 0.0806 0.0879 0.2109 0.1072 0.1006 0.6133 0.1998 0.2617 0.7861 0.3147 0.3122
DCF [64] 0.1588 0.0803 0.0881 0.2104 0.1075 0.1008 0.6127 0.1995 0.2602 0.7858 0.3151 0.3128
MCCR(Ours) | 0.1662" 0.0837* 0.0904" | 0.2166° 0.1108"* 0.1025" | 0.6419* 0.2066 0.2853" | 0.7981" 0.3234* 0.3593"
%improv. 4.33% 3.85% 2.61% 2.70% 3.07% 1.69% 4.66% 3.40% 9.02% 1.53% 2.63% 14.87%

The bold score denotes the best experimental result and the underlined score indicates the best baseline. %improv. denotes the relative
improvement of MCCR compared to the best baseline. “*” denotes statistically significant improvement compared to the best baseline
(p-value < 0.05).

Table 6. Debiasing performance comparison of MCCR and causal models on RateBeer and Yelp-2022.

Datasets RateBeer Yelp-2022
Top-20 Top-50 Top-20 Top-50
Model H@20 R@20 N@20 | H@50 R@50 N@50 | H@20 R@20 N@20 | H@50 = R@50  N@50
MCCR-GNN 0.8012 0.3397 0.3661 0.8952 0.5128 0.4626 0.3004 0.1397 0.1123 0.4291 0.2335 0.1383
IPW [50] 0.8005 0.3382 0.3658 0.8937 0.5126 0.4625 0.3015 0.1403 0.1123 0.4293 0.2336 0.1389
DR [32] 0.8007 0.3385 0.3651 0.8939 0.5128 0.4631 0.3018 0.1402 0.1129 0.4295 0.2345 0.1411

PDA [72] 0.8093 0.3416 0.3716 0.9065 0.5174 0.4743 0.3064 0.1426 0.1165 0.4337 0.2381 0.1486
DecRS [59] 0.8296 0.3493 0.3918 0.9152 0.5227 0.4942 0.3093 0.1441 0.1201 0.4389 0.2407 0.1558
DCF [64] 0.8288 0.3491 0.3926 0.9156 0.5223 0.4943 0.3096 0.1443 0.1198 0.4392 0.2403 0.1552
MCCR(Ours) | 0.8557" 0.3562* 0.4166" | 0.9388* 0.5309* 0.5175" | 0.3152° 0.1475° 0.1275" | 0.4433" 0.2456" 0.1687"
%improv. 3.15% 1.98% 6.11% 2.53% 1.57% 4.69% 1.81% 2.22% 6.16% 0.93% 2.04% 8.28%

The bold score denotes the best experimental result and the underlined score indicates the best baseline. %improv. denotes the relative
improvement of MCCR compared to the best baseline. “*” denotes statistically significant improvement compared to the best baseline
(p-value < 0.05).

the backbone model. Tables 5 and 6 show the performance comparison on Top-20 and Top-50. We verify that the
MCCR has a statistically significant improvement compared to the best baseline by a t-test (p-value < 0.05). We
summarize the following conclusions from the experimental results:

e MCCR consistently outperforms all baseline models. This superiority is attributed to its back-door adjust-
ment strategy during inference, which alleviates the negative impact of bias on RSs through unbiased
estimation. Compared to the best baseline, the MCCR improves by an average of 3.99% on all three metrics.
These experimental results validate the rationality of causal analysis in MC recommendation scenarios
and the necessity of employing causal interventions for debiasing.

e Both IPW and DR are classical debiasing methods, but they perform poorly on the four datasets. This
phenomenon is mainly due to the sparsity of user feedback in MC scenarios, which causes them to face
large variance when calculating weights. The instability of the weights limits their debiasing performance
in the MC recommendation task. In addition, the high-order heterogeneity of the users’ MC preferences
results in IPW and DR becoming extremely challenging in capturing complex causal relationships.

e DecRS and DCF lead alternately and both outperform PDA. Since PDA is good at mitigating the negative
impact of popularity bias on RSs, its performance is limited when dealing with the selection bias caused by
the difference of users’ MC interests. Unlike PDA, DecRS is suitable for solving the bias problem induced
by the user preference distribution, DCF focuses on the bias caused by the confounders. Although DecRS
and DCF achieve good performance, they ignore the higher-order user behavior information carried by
MC ratings. Different from the existing causal methods, the proposed MCCR specifically deals with the
bias problem in MC scenarios, which guarantees that the model achieves unbiased prediction in MC
recommendation.

ACM Trans. Inf. Syst.
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5.3.2 Debiasing Performance on Different Backbone Models. To further validate the effectiveness of the MCCR in
causal intervention, we select Light GCN-MC, CPA-LGC, and MCCR-GNN as the backbone models for the debiasing
experiments. Specifically, we adopt PDA, DecRS, DCF, and MCCR for intervention inference in the prediction
phase of each backbone model and compare their performance in four MC scenarios. Figure 5 illustrates the
Top-20 recommendation performance of the four causal methods on the three backbone models. The experimental
results again demonstrate the effectiveness of the proposed MCCR in mitigating the bias problem in MC scenarios.
We argue that the superiority of the MCCR stems from the following two aspects:

o Causality mining. We leverage the SCM to deeply explore the causal relationships between user behavior

and model predictions in MC scenarios from the perspective of data generation, which reveals the real
reason for bias amplification. As discussed in Section 4.1.2, the backdoor path opened by confounders may
generate spurious correlations, thereby degrading the predictive quality of the model. Therefore, clearly
identifying and eliminating these spurious association is key to improving recommendation performance.

Unique inference paradigm. The inference paradigm designed for MC rating recommendations employs

the back-door adjustment to block the back-door path, which achieves unbiased estimation during model
decision making. As mentioned in Section 4.1.3, the proposed inference strategy effectively removes the
disturbance of confounders and enhances the accuracy of model prediction. Therefore, correcting the
model to prevent bias amplification is important for exploiting complex user preferences.
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Table 7. Ablation studies on TripAdvisor and Yahoo!Movie.

TripAdvisor Yahoo!Movie

Top-20 Top-50 Top-20 Top-50

Variants | H@20 R@20 N@20 | H@50 R@50 N@50 | H@20 R@20 N@20 | H@50 R@50 N@50
w/o MCR | 0.1435 0.0716  0.0791 | 0.1856 0.0976 0.0912 | 0.5604 0.1863 0.2215 | 0.7206 0.2854  0.2357
w/o GNN | 0.0864 0.0495 0.0312 | 0.1137 0.0628 0.0414 | 0.3622 0.1246  0.1638 | 0.4753 0.1968 0.1916
w/o GAT | 0.1621 0.0802 0.0873 | 0.2116  0.1079 0.1012 | 0.6276 0.2014 0.2708 | 0.7735 0.3152  0.3263
w/o SSL | 0.1615 0.0793  0.0866 | 0.2105 0.1051 0.0994 | 0.6232 0.1998 0.2631 | 0.7712 0.3143  0.3261
w/o BDA | 0.1507 0.0764 0.0855 | 0.2021 0.1064 0.0981 | 0.5833 0.1918 0.2346 | 0.7669 0.3017  0.2657
MCCR | 0.1662 0.0837 0.0904 | 0.2166 0.1108 0.1025 | 0.6419 0.2066 0.2853 | 0.7981 0.3234 0.3593

The bold scores indicate the best experimental results.

Table 8. Ablation studies on RateBeer and Yelp-2022.

Datasets

RateBeer Yelp-2022

Top-20 Top-50 Top-20 Top-50

Variants | H@20 R@20 N@20 | H@50 R@50 N@50 | H@20 R@20 N@20 | H@50 R@50 N@50
w/o MCR | 0.7713  0.3222 0.3565 | 0.8581 0.4767 0.4133 | 0.2869 0.1313  0.1027 | 0.4125 0.2158 0.1242
w/o GNN | 0.4945 0.1728 0.2205 | 0.6737 0.3894 0.2547 | 0.1527 0.0973 0.0645 | 0.2386 / 0.0975 = 0.0892
w/o GAT | 0.8369 0.3497 03968 | 0.9114 0.5207 0.5018 | 0.3078 0.1433  0.1192 | 0.4355 0.2394 0.1546
w/o SSL | 0.8362 0.3476 0.3964 | 0.9105 0.5176 0.5004 | 0.3055 0.1429 0.1187 | 0.4352 = 0.2381 0.1535
w/o BDA | 0.8012 03397 0.3661 | 0.8952 0.5128 0.4626 | 0.3004 0.1397 0.11237| 0.4291 0.2335 0.1383
MCCR | 0.8557 0.3562 0.4166 | 0.9388 0.5309 0.5175 | 0.3152 0.1475 0.1275 | 0.4433 0.2456 0.1687

The bold scores indicate the best experimental results.

5.4 Ablation Experiment (RQ3)

In this subsection, we evaluate the impact of different components of the MCCR on the model performance and
the ablation studies for MC ratings.

Datasets

5.4.1 Ablation Studies on Different Components of the MCCR. To,validate the effectiveness of different compo-
nents of the proposed MCCR on the recommendation performance, we design the following five variants of the
MCCR:

e w/o MCR: MC ratings are removed during modeling and only overall rating is retained for prediction. It
should be noted that after removing MC ratings, the model’s back-door adjustment strategy fails as the
user’s MC preference distribution cannot be computed.

e w/o GNN: The constructed GNN architecture is removed and the user MC preferences are modeled with
the Multi-Layer Perceptron.

e w/o GAT: The coefficients used to measure the degree of association among the criteria are removed, and
a simple average weighting is used instead of the graph attention network in MC information propagation.

o w/o SSL: The self-supervised contrast loss is removed and the model parameters are updated based on the
BPR optimization objective.

e w/o BDA: The back-door adjustment strategy in the model inference phase is removed and the recom-
mendation is implemented by adopting the traditional data-driven method.

Tables 7 and 8 report the results of the ablation studies on the four MC datasets. We can see that the performance
of the variant “w/o MCR” decreases significantly after removing MC ratings. This indicates the importance of
higher-order information in MC ratings for mining complex user preferences. The performance of the variant
“w/o GNN” is the worst, which highlights the key role of GNN in capturing higher-order associations in user
interaction data. Compared with traditional Multi-Layer Perceptron, the GNN-specific topology aggregation
mechanism can model user preferences more adequately, especially in multiple sparse MC views. Although
the performance of variant “w/o GAT” is relatively good, it still does not reach the level of the MCCR, which
is attributed to the fact that simple average weighting fails to effectively reflect the degree of user preference
for different criteria. In other words, effectively extracting the heterogeneity of user preferences is crucial to
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Table 9. Ablation studies on MC ratings.

Datasets Variants Top-20 Top-50

H@20 R@20 N@20 %DR. | H@50 R@50 N@50 %DR.
w/o R1 0.1491  0.0746  0.0836 -1.88% | 0.1965 0.1052 0.0958 -2.08%
w/o R3 0.1468 0.0731 0.0815 -3.86% | 0.1911 0.1027 0.0936 -4.50%
w/o R5 0.1451  0.0718 0.0792 -5.70% | 0.1878 0.0983 0.0915 -7.14%

. . MCCR-GNN | 0.1507 0.0764 0.0855 - 0.2021 0.1064 0.0981 -

TripAdvisor

w/o R1 0.1613  0.0819 0.0894 -2.07% | 0.2134 0.1095 0.0987 -2.12%
w/o R3 0.1574 0.0812 0.0863 -4.27% | 0.2083 0.1037 0.0971 -5.17%
w/o R5 0.1535 0.0795 0.0855 -6.03% | 0.1977 0.0996 0.0946 -8.85%

MCCR 0.1662 0.0837 0.0904 - 0.2166 0.1108 0.1025 -
w/oR1 0.5787  0.1905 0.2313 -0.96% | 0.7585 0.2931 0.2628 -1.68%
w/o R2 0.5724 0.1883 0.2294 -1.97% | 0.7422 0.2883 0.2561 -3.76%
w/o R3 0.5662  0.1871 0.2236 -3.36% | 0.7293 0.2857 0.2417 -6.41%

Yahoo!Movie MCCR-GNN | 0.5833 0.1918 0.2346 - 0.7669 0.3017 0.2657 -
w/o R1 0.6361 0.2058 0.2829 -0.71% | 0.7864 0.3206 0.3518 -1.47%
w/o R2 0.6259 0.2014 0.2776 -2.57% | 0.7743 0.3155 0.3482 -2.84%
w/o R3 0.6175 0.2001 0.2715 -3.93% | 0.7721 0.3093 0.3313  -5.14%

MCCR 0.6419 0.2066 0.2853 - 0.7981 0.3234 0.3593 4
w/o R1 0.7813  0.3324 0.3634 -1.79% | 0.8837 0.5003 0.4526 -1.96%
w/o R2 0.7779  0.3286 0.3602 -2.60% | 0.8765 0.4966 0.4438 -3.10%
w/o R3 0.7718  0.3259  0.3587 -3.25% | 0.8682 0.4824 0.4216  -5.94%

RateBeer MCCR-GNN | 0.8012 0.3397 0.3661 - 0.8952 < 0.5128 0.4626 -
w/oR1 0.8434 0.3467 0.4151 -1.49% | 0.9212 0.5234 0.5033 -2.01%
w/o R2 0.8368 0.3416 0.4109 -2.56% | 0.9167 0.5171  0.4865 -3.65%
w/o R3 0.8261 0.3375 0.4053 -3.81% | 0.9058 0.4923 0.4771 -6.20%

MCCR 0.8557 0.3562 0.4166 - 0.9388 0.5309 0.5175 -
w/o R1 0.2959 0.1361 0.1052 -3.47%{ 0.4212°  0.2267 0.1312 -3.30%
w/o R2 0.2903  0.1314 0.1049 -5.30% | 0.4176 0.2179 0.1266 -5.94%

Yelp-2022 MCCR-GNN | 0.3004 0.1397 0.1123 - 0.4291 0.2335 0.1383 -
w/o R1 0.3102  0.1418 - 0.1208 -3.57% | 0.4363 0.2365 0.1628 -2.93%
w/o R2 0.3016  0.1377 0.1195  -5.74% | 0.4255 0.2297 0.1534 -6.52%

MCCR 0.3152 0.1475 0.1275 - 0.4433 0.2456 0.1687 -

The bold scores indicate the best experimental results and “%DR. indicates the average decline rate.

the performance improvement of the model. MCCR adaptively learns attention coefficients among criteria to
capture the importance of each criterion for individual users. The performance of the variant “w/o SSL” and the
variant “w/o GAT” is similar, but slightly decreased on multiple metrics, which emphasizes the positive role of
self-supervised contrast loss in facilitating model to learn robust and discriminative feature representations. The
contrast loss among criteria enhances the representation learning of sparse features by narrowing the embedding
distance of the same user on different views. Compared to the MCCR, the performance of the variant “w/o BDA”
is significantly reduced, which validates the necessity of causal intervention to mitigate the negative impact of
confounders on RSs. In summary, the results of the ablation studies clearly demonstrate that each component
of the MCCR has a positive effect on modeling users’ MC preferences, which is consistent with our previous
theoretical analysis.

5.4.2  Ablation Studies on MC Ratings. To validate the effectiveness of MC ratings in improving recommendation
performance, we design variant “w/o RN” based on the MCCR-GNN and the MCCR, which randomly removes N
criteria. Specifically, we randomly remove 1, 3, and 5 criterion interaction graphs on TripAdvisor, respectively; We
randomly remove 1, 2, and 3 criterion views on Yahoo!Movie and RateBeer, respectively; We randomly remove 1
and 2 views on Yelp-2022, respectively. The experimental results are shown in Table 9, where %improv. denotes
the average performance degradation on the three metrics. It can be seen that the rate of model performance
degradation increases significantly as more MC ratings are removed. These results prove that MC ratings play
an important role in boosting RSs. The additional auxiliary information enhances the understanding of user

ACM Trans. Inf. Syst.



22 « Guoetal

Hyperparameter Ay

Hyperparameter Ay
o, o

Hyperparameter Ay
0 o

. - 0.285 - - - 0285
o s 7- ..

0320 F

0.206

0204
02811 | 02793

02811 | 02793

0.27:

0Z®N U0 3dUBULIOLAd

0.20;

02853 02845
0.27¢

0.200

02®Y Uo 9>ueULIOpDY

Hyperparameter T
Hyperparameter
Hyperparameter T

03212 0323 03227

05®¥ U0 33uEULOI
Hyperparameter ©
0Z®N uo 2uewLIOpAd

0.265 0.265

0108

0.260

0.260

Yahoo!Movie Yahoo!Movie Yahoo!Movie Yahoo!Movie

Fig. 6. Hyperparameter sensitivity w.r.t. Ay and 7 on Yahoo!Movie.

Yahoo!Movie 0.206 Yahoo!Movie 0.3225 Yahoo!Movie Yahoo!Movie
020 03200

03175 Q

Performance on N@20
°

Performance on N@20

0.202 ®

4
03150 £
0.200

°

0.198

Performance on R@20

025

°

0.196 4,

10 03050
0.194

08
06 on
S, 1e-1 04 ramete’ 024
‘s, 02 at
18 pyper®

Fig. 7. Hyperparameter sensitivity w.r.t. n and 7 on Yahoo!Movie.

Yahoo!Movie Yahoo!Movie RateBeer
0.211 328 0. 1363 0.357 .533 0.42

0.207 0.323 0.286 0.356 0.353 ~ 0526 0.416 0.513

o o o s o | o o °
© 0203 0318 ©0.279 0349 @ 0:349 0519 @ 0.409 0.507 §
=4 z =z z @ =z =
0.199 yTo313 0.272 0.342 0.345 0512 0.402 < 0.501
-0O0- rR@20 -0 R@SOV—‘ - N@20 -0 N@STJA] -+ R@20 -0~ rR@50] - N@20 -O- N@50!
0.195 308 0.265 - 335 0341 505 0.395 495
2 4 6 8 2 a 6 8 2 4 6 8 2 4 6 8
Number of layers L Number of layers L Number of layers L Number of layers L

Fig. 8. Hyperparameter sensitivity w.r.t. L on Yahoo!Movie and RateBeer.

interaction behavior, thereby improving the model’s ability to explore diverse user preferences. Therefore,
developing a recommendation framework suitable for MC rating is a reasonable research motivation.

5.5 Hyperparametric Sensitivity Analysis (RQ4)

In this subsection, we evaluate the impact of four hyperparameters of the MCCR on the recommendation
performance: 1) the self-supervised loss coefficient A;; 2) the BPR loss coefficient n on the MC ratings; 3) the
temperature coefficient 7; and 4) the number of GNN layers L.

5.5.1 Sensitivity Analysis of the Self-Supervised Loss Coefficient A;. The hyperparameter 1, is used to control
the trade-off between the self-supervised contrast loss £, and the main recommendation task loss L, in
the MCCR model. This parameter is crucial for improving the robustness and discrimination of the model.
Specifically, the hyperparameter A; learns more discriminative features by narrowing similar embeddings, such
as users or items with similar MC ratings, and distancing dissimilar embeddings. In this paper, 4; is tuned to
be in range {0.2,0.4,0.6,0.8,1.0}. Figure 6 illustrates the impact of 1; on Yahoo!Movie. It can be seen that the
model performance is optimized when 1, is around 0.8. The decrease of 1; value weakens the effect of contrast
strength, which results in insufficient discrimination of the model embedding and a decline of recommendation
performance. When the value of 1, is close to 1, we guess that this may lead to an optimization imbalance between
the contrastive loss and the main task loss, making the recommendation quality worse. Overall, a moderate A,
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value can effectively balance the self-supervised and recommendation objective to achieve the best performance
on MC data.

5.5.2  Sensitivity Analysis of the BPR Loss Coefficient  for MC Ratings. The hyperparameter 7 is used to regulate
the optimized strength of the BPR loss based on MC ratings in the MCCR. This parameter affects the model’s
ability to capture the user’s personalized preferences by assigning different weights to the MC rating loss. In this
paper, the value of 7 is set in the range {0.2,0.4,0.6, 0.8, 1.0}. Figure 7 reports the performance impact of  on
yahoo. It can be seen that when the 7 value is low, the model is unable to fully utilize the feedback from the MC
ratings, resulting in poor performance in capturing diverse user preferences. This is attributed to the fact that the
model may focus more on the overall rating and cannot fully exploit the higher-order information provided by
the MC ratings. It is worth noting that when n = 1, the model does not reach the optimum in all metrics. We
speculate that this may be due to overfitting causing the model to be overly sensitive to subtle differences in
certain criteria. Therefore, setting a reasonable 1 value can help the model capture complex user-item interactions
and improve recommendation quality.

5.5.3 Sensitivity Analysis of the Temperature Coefficient . The hyperparameter z is used to control the sensitivity
of the embedding features in similarity computation among the overall rating view and the MC rating views. In
this paper, we adjust 7 in range {le — 5, le — 4, 1e — 3, le — 2, le — 1}. Figures 6.and 7 show the impact of different
values of 7 on the MCCR. The experimental results show that the performance of the model is optimized when the
7 value is 0.2 or 0.3. We argue that too small 7 value will greatly approximate the embedding distance of similar
samples, which may result in the overfitting problem and reduce the generalization ability of the model. When
the value of 7 is too large, the role of contrast loss is weakened, which may cause the model cannot effectively
distinguish the differences in users’ MC behavioral characteristics. Therefore, setting a reasonable 7 value can help
the model to improve the learning capability of the embedding representation and enhance the recommendation
accuracy.

5.5.4 Sensitivity Analysis of the GNN Layers L. The number of GNN layers L determines the ability of the MCCR
to capture higher-order relationships in user-item interaction graphs. In this paper, L is tuned in range {2, 4, 6, 8}.
Figure 8 illustrates the performance impact of different L values on Yahoo!Movie and RateBeer. We can observe
that the model performance is optimal when L = 4. Too low or too high number of layers can weaken the
predictive performance of the model. We believe that too small L limits the ability of the model to aggregate
higher-order features in the graph structure. Due to the lack of deep dependency information in the embedding
representation, it is difficult for the model to capture the complexity of the user’s preferences. In addition, although
increasing the number of layers allows the model to integrate features from more distant neighbors, this may
cause the over-smoothing problem. In this case, the node representations tend to be similar and cannot reflect
the personalized needs of users. In other words, a large L makes the feature fusion between different nodes
of the model too uniform and weakens the expression ability of different information. Therefore, choosing an
appropriate L value to ensure that the MCCR achieves a balance between capturing local and global interaction
patterns is key to improving the decision-making accuracy of the model.

5.6 Exploratory Analysis

To further explore MCCR, we design performance comparison on large datasets, case study, and efficiency
analysis.

5.6.1 Performance Comparison on Large Datasets. To evaluate the performance of the proposed MCCR in larger
scale recommendation scenarios, we conduct experiments on two large datasets. The statistical information of
the datasets is shown in Table 10, specifically:
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Table 10. Dataset statistics. #Overall and #MC denote the interaction numbers of overall rating and MC ratings, respectively,
and K denotes the number of criteria.

Dataset #Users #Items #Overall #MC K Sparsity
BeerAdvocate 33,388 66,055 1,586,614 6,346,442 4 8.99E-04
RB-Extended 40,213 110,419 2,924,163 11,696,652 4 8.23E-04

Table 11. Performance comparison of MCCR and data-driven models on BeerAdvocate and RB-Extended.

Datasets BeerAdvocate RB-Extended
Top-20 Top-50 Top-20 Top-50

Model H@20 R@20 N@20 | H@50 R@50 N@50 | H@20 R@20 N@20 | H@50 R@50 N@50
GC-MC [7] 0.3254 0.0863 0.1088 0.4352 0.1407 0.1435 0.3952 0.1013 0.1476 0.4804 0.1687 0.1895
SpectralCF [76] 0.2961 0.0737 0.0976 0.4134 0.1289 0.1324 0.3917 0.0988 0.1405 0.4629 0.1558 0.1767
NGCF [61] 0.3536 0.0904 0.1125 0.4481 0.1539 0.1563 0.3946 0.1008 0.1453 0.4768 0.1643 0.1822
DGCF [62] 0.3573 0.0925 0.1193 0.4492 0.1527 0.1588 0.3759 0.0914 0.1282 0.4425 0.1506 0.1615
LightGCN [24] 0.3658 0.0976 0.1282 0.4655 0.1603 0.1625 0.3966 0.1005 0.1489 0.4793 0.1694 0.1871
UBM [77] 0.1974 0.0482 0.0617 0.2563 0.0719 0.0723 0.2129 0.0638 0.0817 0.2673 0.0984 0.1126
DMCEF [42] 0.2166 0.0613 0.0755 0.2964 0.0897 0.0951 0.2567 0.0696 0.0885 0.2914 0.1038 0.1197
AEMC [51] 0.2539 0.0798 0.0846 0.3802 0.1056 0.1279 0.3252 0.0814 0.0895 0.3681 0.1159 0.1268
CFM [13] 0.3145 0.0911 0.1075 0.4296 0.1322 0.1418 0.3771 0.0905 0.1092 0.4253 0.1306 0.1467
LightGCN_MC [24] | 0.3764 0.1007 0.1328 0.4751 0.1696 0.1703 0.4068 0.1027 0.1543 0.4918 0.1773 0.1965
CPA-LGC [44] 0.3855 0.1016 0.1356 0.4838 0.1762 0.1787 0.4128 0.1054 0.1602 0.5037 0.1815 0.2016
MCCR-GNN 0.3908 0.1022 0.1516 0.4961 0.1794 0.2168 0.4193 0.1085 0.1807 0.5162 0.1867 0.2469
MCCR(Ours) 0.4122* 0.1074* 0.1749* | 0.5187" 0.1869*° 0.2422* | 0.4486* 0.1141* 0.2063* | 0.5524 0.1968* 0.2798*
%improv. 6.93% 5.71% 28.98% 7.21% 6.07% 35.53% 8.67% 8:25% 28.78% 9.67% 8.43% 38.79%

The bold score denotes the best experimental result and the underlined score indicates the best baseline. %improv. denotes the relative improvement
of MCCR compared to the best baseline. “*” denotes statistically significant improvement compared to the best baseline (p-value < 0.01).

e BeerAdvocate® is a rating data about the beer and the criteria include appearance, palate, aroma and
taste on a scale of 1 to 5.

e RB-Extended? is an expanded version of RateBeer, containing more extensive rating data under the
same criteria. We name this dataset RB-Extended.

Table 11 reports the performance comparisons of various baselines. We can observe that the proposed model
shows significant superiority on Top-20 and Top-50 recommendations. In particular, compared to the state-of-the-
art baseline, the N@50 of MCCR on BeerAdvocate and RB-Extended increased by 35.53% and 38.79% respectively.
This success is attributed to two aspects: 1) The constructed GNN architecture efficiently mines higher-order
heterogeneous interactions in MC ratings and improves the quality of embedding representations based on the
cross-criteria contractive learning mechanism; 2) The developed inference strategy adopts back-door adjustment
to block the negative impact of confounding, thereby estimating unbiased user preferences. These results verify
the effectiveness of MCCR on large-scale datasets and its application potential in real MC recommendation
scenarios.

5.6.2 Case Study. To illustrate the debiasing performance of MCCR, we analyze the recommendation results of
several models on Yelp-2022. Specifically, we select three typical users (IDs #1358, #3909, and #6375, respectively)
whose criterion preferences have significant differences in the training set. Next, we count the recommendation
lists predicted by CPA-LGC, MCCR-GNN, and MCCR, and calculate their item distributions on different criteria.
We categorize items based on the historical rating percentage on the different criterion views.

It can be observed from Figure 9 that the highest interaction ratios of the cool, funny and useful views in the
training set reach 58%, 51% and 53% respectively. We can find from the experimental results that: 1) CPA-LGC
and MCCR-GNN exacerbate the distributional bias inherent in the data. This is because the data-driven learning
paradigm achieves prediction by capturing correlations of user behavior. This paradigm may cause the model to
overly recommend high-frequency interaction items due to the feedback loop; 2) MCCR alleviates the data bias

Shttps://www.beeradvocate.com/
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Fig. 9. A case study of the recommendation results on Yelp-2022.

Table 12. Efficiency comparisons between MCCR and baselines.

Dataset Yahoo!Movie RateBeer

Model Avg. Time Tot. Time # Epochs | Avg. Time Tot. Time # Epochs
MC DMCF 203s 63.6 m 188 93.6s 333.8 m 214
Methods CPA-LGC 13.7 s 283 m 124 75.8 s 200.9 m 159
MCCR-GNN 128 s 20.5m 96 62.4s 138.3 m 133
Debiasing DecRS 139s 26.6 m 115 66.5's 160.7 m 145
Methods DCF 153s 34.7m 136 69.7 s 192.8 m 166
MCCR 13.1s 223 m 102 63.2's 142.2 m 135

Runtime comparison (seconds/minutes [s/m]), including average time (Avg. Time) for each epoch,
total time (Tot. Time), and the number of convergent epochs (# Epochs).

in the recommendation results. This indicates the rationality of the proposed causal modeling framework. This
framework effectively broadens the user’s perspective and suppresses the negative impacts of homogenization
such as filter bubbles and information cocoons.

5.6.3 Efficiency Analysis. To validate the computational efficiency superiority of the proposed framework, we
compare the runtime of MCCR with several baselines; including MC methods and debiasing methods. It is worth
mentioning that the network backbone of the debiasing methods employs the MCCR-GNN designed in this
paper. To ensure a fair comparison, all experiments are conducted under the same experimental conditions.
Table 12 reports the efficiency results on Yahoo!Movie and RateBeer. We can observe that: 1) CPA-LGC and
MCCR-GNN achieve competitive running efficiency compared to DMCF in the MC methods. This indicates that
the inherent topology-aware property of graph neural networks compensates for the computational bottleneck
faced by traditional meural networks when processing high-dimensional and sparse MC rating data. 2) Among
the debiasing methods, MCCR has the least influence on the backbone model. For example, the average training
time per epoch demonstrates that MCCR introduces almost no additional computational overhead. This can be
attributed to the proposed inference strategy avoids traversing all item pools when estimating the probability
P(R|do(U,I)). This strategy greatly reduces the computational cost of implementing unbiased estimation with
back-door adjustment. In summary, the computational efficiency advantage of MCCR is consistent with our
theoretical analysis.

6 CONCLUSION AND FUTURE WORK

In this work, we propose a novel MCCR recommendation framework for mitigating bias, which models the causal
relationships between user behavior and recommendation decisions through the causal intervention. We also
exploit the heterogeneity of user MC preferences by using graph convolution operation. Experimental results
demonstrate that the proposed framework exhibits superior performance on six MC scenarios compared to the
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existing baselines. Different from the existing MC methods, the MCCR has several advantages. First, the MCCR
analyzes the reason why the bias problem is amplified by using causal inference. The MCCR cuts off the spurious
association induced by confounding with the back-door adjustment, which improves the accuracy of RSs. To the
best of our knowledge, this is the first attempt in the MC recommendation methods. Second, the constructed
training and inference paradigm is model-independent, which improves the accuracy of RSs by formulating
recommendation strategies through unbiased estimation. Third, the proposed architecture introduces GNN to
extract high-order heterogeneous MC ratings and uses the graph attention mechanism to model the user’s MC
preferences. Fourth, the MCCR introduces a self-supervised contrastive loss as a complement to the cost function,
which helps the model adapt to sparse interaction environments and improves the robustness of RSs.

In future work, several limitations need to be improved. For example, the designed static M may not accurately
reflect the real-time transfer of user interests in practical applications [60], and how to design a dynamic
framework to capture the changing user preferences is a crucial challenge. In addition, MC ratings may result
in the optimization imbalance problem during the training process, so that the weights of the neural network
are dominated by the MC information. How to design an adaptive optimization method for gradient updating is
another important challenge. On the other hand, the MCCR has the limitation of scalability when faced with
spurious correlation problems caused by unobservable variables. It is a reasonable and practical solution to
address the above challenge by employing the front-door criterion.
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